句子

  1. Carbon fiber-reinforced plastic/polymer (CFRP) has garnered attention due to its superior mechanical properties,
    including lightweight, high strength, strength-to-weight ratio, stiffness-to-weight ratio, fracture toughness, corrosion resistance, high decomposition temperature, and dimensional stability.

    碳纤维增强塑料/聚合物(CFRP)因其优异的机械性能而备受关注。包括轻量化、高强度、强度重量比、刚度重量比、断裂韧性、耐腐蚀性、高分解温度、尺寸稳定性。

  2. Owing to high anisotropy, strength, and toughness, CFRP machining often results in fiber damage like burr and tear [9], matrix cracking [10], and delamination [11], together with high surface roughness and heat generation [12] and severe tool wear.

    由于CFRP具有较高的各向异性、强度和韧性,加工过程中经常出现毛刺撕裂[9]、基体开裂[10]、脱层[11]等纤维大坝老化现象,同时表面粗糙度高、发热量大[12],刀具磨损严重。

  3. 【现象描述】Through edge trimming experiments, three cutting mechanisms were developed:
    (1) for 0° fiber orientation, fracture occurred along the fiber/matrix interface; (2) for fiber orientation less than 75°, shear perpendicular to the fiber axis; (3) for fiber orientation of 90° or larger, both in-plane and out-of-plane shear fractures, as shown in Fig. 2.

    通过切边实验,得出了三种切边机理:(1)当纤维取向为0°时,沿纤维/基体界面发生断裂;(2)供纤维取向小于75°,剪切垂直于纤维轴;(3)当纤维取向为90°及以上时,面内和面外剪切断裂均出现,如图2所示。

  4. The article demonstrated that chipping, pressing, and bouncing deformation occurred when the fber orientation was less than 90°, whereas fiber bending became more significant, leading to more severe substrate damage for orientations equal to or greater than Fig. 1 Definitions of the cutting variable 90°, as shown in Fig. 3.

    本文表明,当纤维取向小于90°时,会发生碎裂、挤压和弹跳变形,而当纤维取向等于或大于90°时,纤维弯曲变得更加明显,导致基材损伤更严重

  5. The conclusion indicated that for fiber angles smaller than 65°, cutting force increased with larger feed but decreased beyond 65° for smaller feed.

    结果表明,当纤维角小于65°时,切削力随进给量的增大而增大,而当纤维角大于65°时,切削力随进给量的减小而减小。

  6. 【介绍部分结束说明】The rest of the paper is organized as follows: in Sect. 2, tool positioning and orientation smoothing strategies considering fiber orientation are demonstrated. In Sect. 3, experiments about CFRP milling are carried out. In Sect. 4, the machining results are measured and analyzed. In Sect. 5, the conclusion is drawn, and future work is outlined.

  7. 【总结】The influence of cutting orientation with fiber orientation on surface damage was investigated, and a new tool positioning method was demonstrated.

  8. For a specific point on a given free-form surface with known normal orientation n and the fiber orientation v (both unitized), assuming n and v are pointing outward, the cutting orientation that forms the smallest angle with the fiber orientation is calculated as

  9. The CFRP machining experiments are divided into three groups: experimental group 1 (EG-1), experimental group 2 (EG-2), and control group (CG).

  10. 【引用方式】Kumar D, Singh KK (2015) An approach towards damage free machining of CFRP and GFRP composite material: a review. Adv Compos
    Mater 24:49–63. https://doi.org/10.1080/09243046.2014.928966

专业词汇

  1. autoclave molding:[化工] 蒸压罐模制法;高压釜成型
  2. compression molding:压缩成型
  3. laser-assisted tape placement:激光辅助胶带放置(LATP)
  4. milling, drilling, grinding, or polishing:铣削、钻孔、研磨或抛光
  5. polymers:聚合物
  6. isotropic:各向同性
  7. alloys and polymers:合金和聚合物
  8. burr, tear, matrix cracking, delamination:毛刺、撕裂、基体开裂、分层
  9. thermal damage:热损伤
  10. Vibration-assisted machining:振动辅助切削
  11. thrust force:推力
  12. ultrasonic vibration-assisted grinding (UVAG):超声振动辅助磨削(UVAG)
  13. pile-up deformation:堆积变形
  14. monolayer brazed tool:单层钎焊工具
  15. effective rake angles:有效前倾角
  16. minimum quantity lubrication machining:最少润滑量加工
  17. carbon nanotube nanofluid MQL (CNT-NMQL):碳纳米管纳米流体(CNT-NMQL)
  18. 3D fractional dimension:三维分数维
  19. texture feature change:纹理特征变化
  20. nominal depth of cut:标称切割深度
  21. chipping, pressing, and bouncing deformation:碎裂、挤压和弹跳变形
  22. orthogonal cutting experiment:正交切削实验
  23. dimensional accuracy:尺寸精度
  24. singularities:奇异点

问题

  1. Liang et al. [17] performed ultrasonic vibration-assisted grinding (UVAG) with a monolayer brazed tool for edge trimming, which exhibited modified pile-up deformation and improved ground surface compared to conventional grinding.

    单层工具?

  2. clearance angle and the fber cutting angle:间隙角和纤维切割角

  3. in the C axis angle in post-processed programs and experiments:如何转变

  4. $c = \frac {v-n\cdot (n\cdot v)} {|v-n\cdot(n\cdot v)|}$ 是如何得到的

  5. (P6)$90 ^\circ$ 写为 $(1,1,0)$

  6. conventional machining strategies 何为传统加工策略

  7. 三轴、五轴区别,为啥对照要用三轴

  8. 加工轨迹?

  9. 迭代的实际效用

结论

  1. (P3)纤维方向角度大于65度时,阻力随进给量增大而增大,出现连续切屑;反之减小,出现粉末状切屑
  2. $c: 最小切割方向,u:实际切割方向,v:纤维朝向​$
  3. $cos \theta(\phi) = v ⋅ u = v ⋅ (c\ cos \phi + p sin \phi)
    \= (v ⋅ p) cos \phi = cos \theta_{min} cos \phi$
  4. 刀具位置优化策略:以降低加工过程中的材料崩裂为导向,通过最小化切削方向与纤维方向间夹角,确定刀具位置,降低材料崩裂风险。
  5. 加工轨迹平滑策略:对轨迹中刀具位置的突然大角度变化,使用迭代平滑的方式降低变化(不过似乎并没有改变奇异点的突然变化)

devil.